
Quality of Service Channelling for Latency Sensitive Edge Applications

Atakan Aral, Ivona Brandic
Institute of Software Technology and Interactive Systems

Vienna University of Technology
Vienna, Austria

{atakan.aral, ivona.brandic}@tuwien.ac.at

Abstract—Edge data centers (EDCs) typically provide lower
availability rates than Cloud counterparts since they lack
expensive support systems such as air conditioning units
and power generators. To avoid this limitation deteriorating
response time which is critical for Edge applications, use of
proactive optimization algorithms is essential. Such proactive
algorithms, however, require an accurate method for estimating
availability of a VM that runs on a certain EDC. Estimation
is complicated by several dependent and independent prob-
abilistic events (e.g. hardware, software or network failures,
power outage, etc.) that affect VM availability in different
levels. In this paper, we propose a Bayesian Network model
of QoS related parameters to estimate availability level of
a VM in Edge infrastructure. We compare our approach to
other machine learning methods and to the common practice
in reliability theory that is the use of prior failure probability.
According to experimental results, proposed method can iden-
tify VMs that satisfy user defined availability objectives with up
to 94% accuracy and decrease SLO violations by nearly 44%.
In addition, we empirically investigate the trade-off between
running time and accuracy of proposed approach.

Keywords-Cloud Computing; Edge Computing; Quality of
Service; Virtual Machine Availability; Bayesian Networks.

I. INTRODUCTION

Cloud computing has revolutionized information tech-
nologies industry in the past decade by favor of efficiency
and flexibility it provides. Rapid increase in the magnitude of
data generated and consumed by Cloud Services, however,
is beginning to cause a bottleneck in network bandwidth
[1]. Moreover, highly interactive applications are demand-
ing lower and lower network latency for accessing Cloud
computing resources [2]. In response, Edge computing is an
endeavour to achieve benefits of Cloud computing without
causing network congestion or forfeiting low access latency.
It proposes Cloud computing resources to be located in
close proximity to their consumers instead of large-scale
centralized data centers in order to keep network access
latency to a minimum.

Extreme sensitivity to latency and huge amount of data
to be processed / transferred are the typical characteristics
of new generation cloud tasks (e.g. IoT, Cyber-Foraging)
that Edge computing must address to accelerate its adoption
[1]. Moreover, software and hardware failures are quite
common at Edge data centers (EDCs) due to their distributed
nature, volatile workload and the absence of advanced

support systems such as air conditioning units and power
generators which are present in centralized Cloud data
centers. In addition to reducing availability and possibly
causing service level objective (SLO) violations, failures
also adversely affect response latency and bandwidth traffic
since the tasks in failed EDC should be distributed to other
Edge or Cloud data centers. Size of data to be transferred
and arising delay after a failure restrict the use of reactive
methods alone, hence estimating failures early and taking
countermeasures is critical for both Edge providers and
customers [3]. Proactive optimization algorithms can be ap-
plied during either application deployment or run time. For
instance, a VM replication strategy can be applied to avoid
service disruption and SLO violation. Another solution can
be differentiating VM requests based on required availability
levels and dispatching them to EDCs that are most expected
to satisfy their SLO. In this way, less reliable EDCs are also
utilized by noncritical tasks. One common input to any such
algorithms is the accurate estimation of failure rates or VM
availability levels.

However, estimation problem is nontrivial since failures
in a distributed infrastructure such as Edge can originate
from numerous hardware, software, and network compo-
nents as well as human factors. Moreover, failures usually
have different and variable rates and are not statistically
independent from each other [4]. We present a method that
is based on Bayesian Networks (BNs) to estimate avail-
ability of VMs in EDCs. The probabilistic model captures
dynamic dependencies between different failure types and
temporal failure characteristics of components. In essence,
our aim is to channel all QoS related parameters through
VM availability. Parameters may include, depending on the
availability of data, frequency of various system failures as
well as hardware and software characteristics. We propose
VM as the granularity level for QoS estimation because VMs
decouple hardware from software, thus they can be used for
handling availability of both.

Two challenges specific to Edge computing environment
that we face in estimating QoS are necessity of short
response time and limited historical data for failures. Follow-
ing measures are taken for these challenges respectively, in
order to ensure real-world applicability of our approach: (i)
A BN augmentation strategy (described in IV-C) which im-

proves runtime performance with respect to frequent model
learning, and (ii) An evidence extraction strategy (described
in IV-D) fusing relevant traces to cope with data scarcity. In
brief, our contributions in this study are a probabilistic model
for estimating failures in Edge systems and approximations
to solve possible problems in its practical application.

We describe BN model and introduce formalism used
throughout the paper in Section II and introduce the pro-
posed system architecture in Section III. Then we present
the estimation methodology in Section IV and its evaluation
in Section V. We provide related literature and conclude the
paper in Sections VI and VII, respectively.

II. BACKGROUND ON BAYESIAN NETWORKS

BN is a tool to represent and organize the general knowl-
edge about a particular situation. Qualitative part (i.e. struc-
ture) of BN is a directed acyclic graph (DAG) with vertices
representing relevant variables of the situation and edges
representing the dependencies between those. Quantitative
part (i.e. parameters), on the other hand, consists of the
probabilities of relationships between variables and their
parents (direct causes) in the form of Conditional Probability
Tables (CPTs) [5].

Consider a set of random variables R = {r1, r2, . . . , rn}.
A BN can be defined for R, in a formal way, as the
pair 〈G,Θ〉, where G is above explained DAG which is
convenient for visualizing dependence and independence
assumptions. Each variable ri is directly dependent on its
parents in G and independent of its non-descendants given
these parents. Then, Θ is a set of conditional probabilities
for each variable given its parents. There exists a parameter
θ ∈ Θ such that θ = Pr(ri | parents(ri)) for each
combination of values that ri and its parents can possibly
take [6]. Computing conditional probabilities of variables
that are not directly connected in G are trivial via Bayesian
inference.

We choose BN as the tool for modeling availability mainly
due to its capability to handle conditional dependencies
and uncertainty. Another reason is compactness since a BN
can specify an exponentially sized probability distribution
using a polynomial number of probabilities [5]. Figure 1
demonstrates an example BN for EDC availability scenario.
Three failure types that affect the availability of VM are
available in this example (i.e. power outage, hard disk drive
failure and operating system failure). Causal dependence
of availability to these failures are represented by directed
edges arriving from them. Moreover, these failures are not
independent from each other neither, e.g. a power outage
may cause a HDD or OS failure, and a HDD failure
may cause an OS failure. Network is also annotated with
CPTs that quantify direct dependencies. In these tables
probability of a failure is presented for each combination
of values that its direct causes can take. All variables are
binary and identified by their initials in this example, hence

Availability

OS Failure

Power

Outage

P H OPr(A = T) Pr(A = F)
T T T 0.19 0.81
T T F 0.33 0.67
T F T 0.27 0.73
.

Pr(P = T) Pr(P = F)
0.99 0.01

P H Pr(O = T) Pr(O = F)
T T 0.10 0.90
T F 0.08 0.92
F T 0.06 0.94
F F 0.05 0.95

Failure

HDD

P Pr(H = T) Pr(H = F)
T 0.01 0.99
F 0.03 0.97

Figure 1. An Example Bayesian Network that Depicts Dependencies
between Failures and EDC Availability.

occurrence of failures are represented by true (T) or false
(F) labels. CPT belonging to availability variable indicates
that the probability of achieving availability objective of
the customer, Pr(A = T) when all three failures occur,
〈P,H,O〉 = 〈T, T, T 〉, is 0.19 and it increases to 0.33 if we
know that HDD failure did not occur, 〈P,H,O〉 = 〈T, F, T 〉.
Similarly, according to its CPT, probability of a OS failure
is 0.10 given that a power outage and HDD failure occurred.
However, it drops to 0.06 if no power outage is observed.

Reasoning in BNs can be performed in both directions.
One may predict causes given symptoms, e.g. determining
which failure caused unavailability, or predict symptoms
given causes, e.g. estimating availability when certain fail-
ures occur [7]. Former is known as diagnostic reasoning,
whereas in this study, we focus on the latter which is called
predictive reasoning.

III. SYSTEM ARCHITECTURE

A high level overview of the system is depicted in Figure
2. Distributed EDC monitors (Figure 2.1) collect relevant
parameters such as failure traces or hardware / software
characteristics and transfer them to a central repository
(Figure 2.2). Actualization of the monitoring system is
outside the scope of this study. We assume that data is
being collected continuously in a fairly accurate way while
BNs are quite tolerant to noise in their parameters [8]. In
practice, heartbeat protocol is a well-known approach for
fault detection in distributed systems [9], whereas fault tree
analysis is an established tool for root cause detection of
failures [10].

Parameters collected in the repository are concurrently
consumed as training data by the VM availability estimation
module, (Figure 2.3) which is described in detail in Section
IV. Another input to the estimation module is relevant
objectives, e.g. minimum availability, maximum error rate,

Internet(1) EDC Monitors

(2) Parameter Repository (4) SLA

Data Preperation

Model Learning

Model Augment.

Evidence Extract.

Classification

(3)

Figure 2. Runtime Architecture for the VM Availability Estimation System.

from the service level agreement (Figure 2.4) in machine-
readable format. This can be as simple as an XML file or
as advanced as a Smart Contract. Output of the module is a
set of estimated probabilities for the satisfaction of SLOs at
each VM and EDC. This information is ready to be utilized
by a task scheduling algorithm.

IV. VM AVAILABILITY ESTIMATION

Figure 3 describes the information flow between the com-
ponents of proposed method. Basic sequence is as follows.
After data is prepared (A) from failure traces and BN model
is learned (B) from that data, BN is augmented (C) to fit
the availability objective at hand. BN model is then used to
estimate probability (E) of fulfilling that objective at each
EDC. Evidence necessary for classification is extracted (D)
from data depending on the characteristics of requested VM
and EDC. Following subsections describe each component
in detail.

A. Data Preparation

Failure traces from Edge infrastructure are stored in a
repository which is a collection of vectors in the form
di = 〈x, y, ts, te, k〉. Here, x and y are unique identifiers
of EDC and VM where the failure occurred, ts and te are
start and end timestamps of unavailability, and k ∈ [1, n] is
the error code for the cause of failure. Pre-processing of data
before model learning consists of aggregation, normalization
and discretization. In the first step, number of occurrences
of each failure type, k, on each (x, y) pair is counted
in failure traces. Then, counts are normalized by runtime
duration of that pair so that they indicate frequencies of each
failure. A class variable indicating historical availability of
the pair is also appended to each record. Availability can
be easily computed by using ts and te fields of failure
traces. Finally, all numeric attributes are discretized into
nominal ones. Attributes are divided into b bins such that
each bin of an attribute has the same number of instances
(i.e. equal frequency binning). As an example, when b = 3,
frequency bins can be considered as frequent, occasional,
and rare occurrence of a failure type. Availability class,

on the other hand, is discretized into binary using a pre-
defined threshold. This binary version is only used for
initial model learning and the numeric availability values are
also saved for rediscretization during model augmentation
phase where actual availability objective is used as threshold
(see subsection IV-C). Each record can be represented as a
vector r = 〈r1, r2, . . . , rn, c〉 where ri are failure frequency
attributes and c is the availability class. In the rest of the
paper, we refer to each such vector as an instance.

B. Model Learning

Second step of our approach is to learn an initial BN
model of inherent dependencies among various failure
causes and their influence on VM availability. Both structure
(DAG) and parameters (CPTs) of the BN are automatically
learned from historical failure data. The objective in learning
BNs is to find a network that best describes the probability
distribution over the training data. Since the problem of
finding the optimal network is NP-Complete [11], various
approximate algorithms are proposed. The simplest solution
to the problem is to assume that all attributes are condi-
tionally independent of each other given the class value.
This approach is known as naive Bayesian classification. In
this study, however, we appeal to a more realistic learning
algorithm, Tree Augmented Naive Bayes (TAN) [6], which
captures the dependencies among the attributes.

TAN method makes use of conditional mutual information
to specify the dependent attribute pairs. In this case, condi-
tional mutual information, I(ri, rj | c), measures the amount
of information that can be obtained about one attribute by
observing the other and the class variable. In TAN method,
a complete graph is built where vertices are attributes and
edges are weighted with conditional mutual information of
the incident vertices. Then, a maximum weighted spanning
tree is computed on that complete graph to represent the
most significant dependencies [6].

Since independence assumption of Naive Bayes is almost
never valid in practice, it is significantly outperformed by
TAN (see subsection V-A). However, considering inter-
attribute dependence also incurs additional computational

Failure Monitoring A. Data Preperation B. Model Learning

C. Model AugmentationD. Evidence Extraction

E. Classification

Customer

failure traces

evidence
vector

bayesian network

failure
traces

augmented
bayesian network

hw & sw
characteristics

availability
requirements

�flow�

training
instances

Figure 3. UML Information Flow Diagram for the Proposed Availability Estimation Method.

cost. Time complexity of learning a BN from m instances
with n attributes using TAN method is O(n2m) which
may cause a performance bottleneck if performed at each
VM request (see subsection V-C). Thus, we propose a
BN augmentation strategy as described in the following
subsection.

C. Model Augmentation

Since each VM request has a different availability ob-
jective, binary classes of training instances (that indicate
achievement of objective) should be reset at each request
and BN model should be updated, accordingly. Moreover,
new failure events over the time may also change our
knowledge and require updating the model. Computational
cost of TAN algorithm, however, restrains us from rebuilding
the entire model whenever a new evidence is observed or
an instance is received to be classified. Here, it should be
noted that relatively high time complexity of building model
stem from structure learning. If a structure was already
given, updating conditional probabilities would only be a
bookkeeping problem. Time complexity of CPT update,
when parent count of each node is constant (which is 2
in the case of TANs used in this study), is O(nm′) where
m′ is the number of additional training instances. Thus, we
resort to an approximation assuming that the structure of BN
would require a change at a much lower rate than the CPTs.

Figure 4 describes the proposed algorithm for model
augmentation. After the initial BN is built, the same structure
is used in subsequent requests, by rediscretizing the class
according to availability objective (lines 5–9) and by only
updating CPTs (line 10). Complete structure and parameter
rebuilding (line 13) can be triggered in fixed periods or only
when the accuracy of estimation drops below a threshold. We
implement former alternative in our evaluation.

D. Evidence Extraction

Let us consider an estimation instance where we want
to know whether a given VM will satisfy its availability
objective with a certain probability if it is deployed on a
given EDC. Before the VM is deployed, we usually do not

Input: new instances N , availability objective a, initial
Bayesian Network B

Output: augmented Bayesian Network B′

1: I ← I ∪N {I is a global set of all instances}
2: I ′ ← I {I ′ is a temporary variable not to override I}
3: B′ ← B
4: for all i ∈ I ′ do
5: if i.numericClass >= a then
6: i.class← 1
7: else
8: i.class← 0
9: end if

10: updateParameters(B′, i) {Only CPTs}
11: end for
12: if isObsolete(B′) then {Fixed period or accuracy}
13: rebuild(B′) {DAG and CPTs}
14: end if

Figure 4. Pseudo Code Description of Model Learning and Augmentation.

have any historical data for its runtime failure behaviour.
Failure traces of EDC may also be quite limited due to
the relative infrequency failures. To overcome these two
problems, historical data (failure traces) for other EDCs and
VMs that share certain characteristics with instance at hand
can be aggregated to synthesize evidence. Set of common
characteristics to be considered will be different for each
attribute (i.e. failure type).

In practice, binary vectors v = 〈v1, v2, . . . , vα〉 and
e = 〈e1, e2, . . . , eβ〉 are used to represent VM and EDC
characteristics, respectively. For instance, if at most eight
different Internet service providers (ISPs) are present, e1, e2,
and e3 can be used to encode the ISP that an EDC get service
from. Similarly, v1 and v2 can identify different network
connection types (e.g. bridged networking, NAT, etc.) for
VMs. In addition, a masking vector a = 〈a1, a2, . . . , aα+β〉
is used to describe which attributes in v and e are significant
for each failure type. Continuing above example, a certain
type of network error (identified by k ∈ [1, n]) may be

related to ISP and connection type. This information is
represented by a vector ak where ak1 , ak2 , ak3 , akα+1, and
akα+2 are 1, whereas all other components are equal to 0.
Then, set Sk in Equation 1 contains only the trace instances
having same ISP in EDC and same network connection in
VM. Here, _ is the vector concatenation operator and ~0 is
a vector, which has all components equal to 0. Exclusive
or (⊕) compares concatenated characteristic vector of each
trace with the instance to be estimated, whereas masking
vector ak ensures that unrelated characteristics are ignored.

Sk =

{
s ∈

[
1,m

] ∣∣∣ ak ∧ ((
vs_es

)
⊕
(
v_e

))
= ~0

}
(1)

Next step is to instantiate each attribute of evidence vector
e = 〈e1, e2, . . . , en〉 with its most frequent value (i.e. mode)
among the instances in its S set. In Equation 2, ri is
the attribute vector of an instance i and [. . .] indicates a
multiset by an abuse of notation. Then, kth component of
the evidence vector (ek) is calculated as the mode of multiset
that contains kth components of all attribute vectors which
belong to an instance in Sk.

∀i ∈ [1,m],∀k ∈ [1, n]

ri = 〈ri1, ri2, . . . , rin, c〉 (2)

ek = mode
([
rjk | j ∈ S

k
])

E. Classification

Final step of estimation is to compute posterior proba-
bilities of both availability classes (i.e. SLO fulfilment and
violation) given extracted evidence. We can use Bayesian
theorem to compute posterior probabilities and predict the
class with the highest probability as shown in Equation 3.
Pr(ci) and Pr(e | ci) can be easily calculated from data or
CPTs.

c∗ = arg max
i=1,2

Pr(ci) Pr(e | ci) (3)

In practice, posterior probabilities of classes are provided
instead of a binary output. This allows taking reliability
management decisions based on how strong is the belief
that an availability objective will be met or missed.

V. EVALUATION

We perform three-fold evaluation of the proposed Edge
availability estimation method. In the first part, we validate
that taking failure dependencies into consideration, in the
form a BN, is indeed beneficial to the accuracy of the
estimation. Hence, we only evaluate the model learning com-
ponent in this part, and compare it to more straightforward
learning algorithms. Whereas in the second and third parts,
we evaluate the complete methodology presented in Section
IV in terms of SLO violations, running time and model

95 96 97 98 99 100

80

85

90

95

Availability Objective (%)

M
od

el
A

cc
ur

ac
y

(%
)

Bayesian Network (TAN)
Logistic Regression

Naive Bayes

Figure 5. Accuracy Comparison of Learning Algorithms for Varying
Availability Objectives.

accuracy. In all three parts, we used real world failure traces
of high performance computing (HPC) servers collected
by Los Alamos National Laboratory (LANL), USA. The
data set spans 9 years between 1996–2005 and contains
19436 failures of 122 distinct types from 3577 servers that
belong to 22 HPC systems [12]. In pre-processing the traces
as training instances, number of bins (b) for discretization
is chosen to be 5 similar to the Likert scale which is
common for mapping a quantitative value to an evaluation.
In addition, unknown causes that are observed in %5.4 of
the traces, are distributed to other failures in proportion to
the frequency of each failure.

Although the LANL data set is not collected on an Edge
computing infrastructure, it possesses certain characteristics
that suits our evaluation scenario well. Similar to Edge, the
number of computation nodes is large, they are organized
in different sites, and are highly heterogeneous in terms of
processor count, memory, hardware architectures, etc., but
most are not as powerful as servers in Cloud data centers.

A. Model Learning Accuracy

In order to evaluate the benefit of including dependent
failures to the model, we train a Naive Bayes classifier as
an alternative to Bayesian Network. Additionally, a discrim-
inative classifier, Logistic Regression, is also trained to act
as an additional baseline for the two generative classifiers.
We perform 10-fold cross validation and logged accuracy,
which is the ratio of number of correctly classified instances
to number of all instances. The process is repeated for 100
different values of availability objectives between 90.0% and
99.9%.

In almost all cases, BN model outperforms both Naive
Bayes and Logistic Regression. Results are provided in
Figure 5 where we omit [90.0%, 95.0%) in x-axis since

Table II
NUMBER OF SLO VIOLATIONS FOR EACH CONFIGURATION USING BAYESIAN NETWORK ESTIMATION (BN) OR ONLY PRIOR KNOWLEDGE (PK)

Chi1 Chi2 Chi3 Chi4 Wei1 Wei2 Wei3 Wei4 Log1 Log2 Log3 Gam1 Gam2 Gam3

PK
µ 54.6 46.2 40.5 35.5 54.6 47.8 48.3 45.4 45.0 59.3 69.3 60.6 44.1 38.5
σ 4.4 4.3 3.4 2.0 3.1 4.0 3.4 3.5 3.5 4.5 4.5 3.2 2.8 3.8
σ/µ 8.0% 9.2% 8.5% 5.7% 5.7% 8.4% 7.0% 7.7% 7.9% 7.7% 6.5% 5.2% 6.3% 9.8%

BN
µ 37.9 33.2 30.2 28.4 39.3 30.4 28.3 25.5 26.7 40.4 57.9 40.8 27.8 26.7
σ 3.5 3.0 2.9 2.3 4.0 2.7 3.0 2.0 1.6 4.1 3.6 2.3 2.3 2.7
σ/µ 9.2% 9.1% 9.5% 8.1% 10.1% 8.9% 10.6% 7.9% 5.8% 10.0% 6.2% 5.7% 8.2% 10.2%

Improvement 30.6% 28.1% 25.4% 20.0% 28.0% 36.4% 41.4% 43.8% 40.7% 31.9% 16.5% 32.7% 37.0% 30.6%

Table I
PARAMETERS AND STATISTICS OF AVAILABILITY DISTRIBUTIONS

Label Distribution Parameters µ σ
Chi1 Chi-Squared Degrees of Freedom: 3 96.97 2.48
Chi2 Chi-Squared Degrees of Freedom: 4 95.97 2.83
Chi3 Chi-Squared Degrees of Freedom: 5 95.09 3.11
Chi4 Chi-Squared Degrees of Freedom: 6 94.01 3.45
Wei1 Weibull Shape: 1.5, Scale: 3.0 97.32 1.81
Wei2 Weibull Shape: 2.0, Scale: 3.0 97.35 1.40
Wei3 Weibull Shape: 2.5, Scale: 3.0 97.33 1.14
Wei4 Weibull Shape: 3.0, Scale: 3.0 97.31 0.97
Log1 Log-Normal Shape: 1.0, Scale: 0.5 96.91 1.66
Log2 Log-Normal Shape: 1.0, Scale: 1.0 95.46 6.41
Log3 Log-Normal Shape: 1.0, Scale: 1.5 91.70 20.95
Gam1 Gamma Shape: 3.0, Scale: 0.5 98.49 0.87
Gam2 Gamma Shape: 3.0, Scale: 1.0 97.02 1.70
Gam3 Gamma Shape: 3.0, Scale: 1.5 95.55 2.57

EDC Availability: 98.62 8.01

accuracies of all three classifiers are almost constant over
that interval. Over interval [95.0%, 99.9%), however, a log-
arithmic decay in the accuracy is observed. This can be
explained with the decreasing number of instances that
satisfy strict availability objectives and thus growing imbal-
ance in class labels. Logistic Regression, or discriminative
approach in general, seems to be more sensitive to this class
imbalance since it demonstrates a steeper accuracy decay
than the others and is considerably outperformed by even
Naive Bayes for availabilities greater than 99.0%. Results
clearly indicate that exploiting inherent dependency between
failures ensure more accurate availability estimation.

B. Virtual Machine Scheduler Simulation

For the second part of evaluation, we implement a VM
scheduling simulator in Java. The scheduler is a prototype
to compare effects of estimation methods on any proactive
availability optimization algorithm. For each VM request, it
identifies EDCs that are estimated to meet the availability
objective, i.e. feasible nodes. Feasible nodes are chosen
based on the output of VM availability estimation method
described in Section IV. To act as a baseline, a simple but
common scheduling method is also implemented where prior
availability of a node is assumed to carry on. In both cases,
VM is scheduled to the minimum cost alternative among
feasible nodes where cost of a EDC is directly proportional
to its observed availability. Failure times and types are taken
from the LANL dataset whereas VM requests are randomly

generated and received in equal time-steps. Failure and
request times are normalized to the range [0, 1].

140 sets of VM requests are generated with availability
objectives that show 14 different configurations of the most
frequently used probability distributions in reliability theory,
namely; Chi-squared, Weibull, Lognormal, and Gamma [12],
[13]. For each set, 10000 VMs are scheduled to EDCs, each
of which has a fixed capacity of 3 VMs, so that total capacity
of the system (3 VMs × 3.577 EDCs) is just enough for the
demand. LANL servers are utilized as EDCs and their failure
and availability data are put to use in the simulation. In
evidence extraction (as described in IV-D), we use a simple
characteristic vector to identify VMs and EDCs in the same
site (i.e. belonging to the same cluster in LANL data set).

Table I lists the distributions and parameters that are used
to generate VM availability sets. For each configuration,
mean (µ) and standard deviation (σ) of 10 generated sets
are also provided for reference. Note that, distributions are
for failure rates while availability is calculated as 100 −
failure rate. Chosen configurations cover a wide range of
possibilities, e.g. fixed scale and variable shape (Wei) or
vice versa (Log and Gam). Parameters are chosen in order
to guarantee that generated availability objectives can be met
with the available EDCs, whose mean and standard deviation
is provided at the bottom. Extreme cases of strict (Gam1)
or flexible (Log3) objectives are also included.

In Table II, we provide mean, standard deviation and
coefficient of variation for the number of SLO violations,
i.e. assigned VM does not fulfill the availability objective at
the end of simulation. Results demonstrate that proposed ap-
proach substantially decreases the number of violations in all
configurations with improvement rates between 16.5% and
45.3%. Improvement gets better as the standard deviation of
a distribution (in Table I) decreases. This is expected since
estimating highly variable availabilities is a harder problem.
However, even the improvement in extremely variable distri-
butions such as Log2, Log3, and Chi4 is significant which
emphasizes the accuracy of learning.

C. Trade-off between Accuracy and Running Time

To examine runtime performance and accuracy of the
proposed approach, we focus on the model augmentation
component (see subsection IV-C) in the final part of eval-
uation. The same VM scheduler simulation described in

0 100 200 300 400 500

70

75

80

85

90

300

350

400

450

500

Period of Model Rebuilding

M
od

el
A

cc
ur

ac
y

(%
)

R
un

ni
ng

Ti
m

e
(m

s)

Model Accuracy

Running Time

Figure 6. Running Time per Request and Average Model Accuracy for
Varying Periods of Model Rebuilding.

subsection V-B is used here using Chi1 distribution and
various model rebuilding frequencies. Figure 6 combines
both running time per request and average model accuracy
for each period. Period stands for the number of new VM
requests to be received in order to trigger complete structure
and parameter rebuilding of the BN model. For reference,
accuracy is 88.1% and running time 1148ms when the
model is not augmented but rebuilt at each request.

As we extend the period, average running time per request
drops rapidly from 1148ms (excluded in Figure to increase
clarity) to around 330ms where it remains stable. Results
indicate that model learning is the larger part of running
time and decreasing its frequency can effectively shorten
decision time. However, for lower frequencies, performance
bottleneck shifts to other components. Experimental results
for running time coincide with our claims in subsection
IV-C. Accuracy of the BN model, calculated via 10-fold
cross validation, on the other hand, demonstrate a steady
decrease (indicated with a trend line) as period increases.
According to experimental results, running time can be
decreased by 70% with no perceivable effect on accuracy
by using model augmentation with a rebuilding period of 50
requests for example. We can also conclude that increasing
period after a point (roughly 100 requests) is not advisable as
it deteriorates accuracy but does not improve running time.
It should be noted that, mentioned values for period depend
heavily on the failure characteristics of Edge infrastructure.
Although we used real world failure data, optimum value
can be slightly different for each application whereas the
trends would remain similar.

VI. RELATED WORK

In Edge computing research, reliability and QoS man-
agement are mostly unexplored areas. None of the well
established QoS methods from other fields such as Cloud
data centers or computer networks can be applied because
they do not work at the scale of Edge and have completely
different data flows and dependencies. One of the few studies
in the area [14], propose recovery schemes in the case of
overload in mobile edge computing (MEC). Main idea is
to offload tasks from MEC nodes that are expected to get
overloaded soon, to other nodes. Prediction of failures and
proactive actions, however, are not taken into account.

Bayesian Networks have been long used in system relia-
bility engineering. Early works [4], [15], [16] rely on expert
knowledge to build networks as efficient structure learning
mechanisms were not yet mature [17]. Manually defining
the dependencies between failures or component of system
is an extremely costly and time-consuming task for modern
day complex systems. Moreover, it is particularly prone to
human errors [17], [18]. Another common method for BN
generation is to translate it from so called Fault Trees (FTs)
[18]–[20]. FT is a tool that is used to determine the cause of
a binary event (e.g. failure), via relationships between other
events represented with logic gates [20]. It can be seen as
special case of a BN where all probabilities in CPTs are
either 0 or 1. Although BNs are automatically created in such
studies, causal relations in FTs are nevertheless determined
via human experience and professional judgments. Hence,
they share the same drawbacks as manual BN generation.

First approach to learn BNs automatically from historical
data for estimating system reliability is presented in [21].
Suggested algorithm uses data mining techniques and score-
based heuristics to explore the search space of possible
BN structures. Although experimental results are promising,
quadratic time complexity (O(m2)) with respect to the
number of nodes (m) restrain us to apply this algorithm
in the large-scale and latency-sensitive Edge scenario. As
explained in IV-B, TAN learning is linear in number of
nodes. In [22], Naive Bayes learning from system parameters
such as CPU, memory, and disk utilization is implemented to
diagnose errors and apply self-healing. A similar approach
[3] to ours applies TAN learning to use system level metrics
to predict normal or abnormal behaviour in the near future
(e.g. in a few minutes). The main difference between the
two works lies in the usage scenario. While authors aim
to predict and prevent infrequent failures in Cloud Systems
in [3], we regard failures as inevitable events in Edge
Systems and instead try to estimate the availability level as
a consequence of them.

VII. CONCLUSION

Frequent failures in Edge data centers, due to their dis-
tributed nature and lack of advanced support systems, may
hinder adoption of Edge computing. Thus estimating failures

and taking proactive measures are vital. In this study, an
availability estimation method for Edge VMs is proposed.
It utilizes historical failure data to extract dependencies be-
tween failures and model their influence on VM availability
via a Bayesian Network. The model is then used to identify
the VMs that would meet the availability objective in SLA.
To the best of our knowledge, proposed approach is the
first application of a probabilistic model to Edge reliability.
In addition to the analytical estimation algorithm, novel
approximation techniques to ensure real world applicability,
namely model augmentation and evidence extraction, are
suggested. Evaluation results demonstrate the advantage of
proposed method in comparison to traditional practices in
reliability engineering as well as other machine learning
models in terms of accuracy and number of SLO violations.
An analysis of the trade-off between accuracy and running
time of availability estimation is also provided. In the future,
we aim to use Temporal BNs in order to capture more
information from sequence and timing of failures. Further
accuracy improvement can be achieved with more detailed
dependency graphs, thus we are planning to test advanced
learning algorithms (e.g. K2) as alternative to TAN.

ACKNOWLEDGMENT

The work described in this paper has been funded through
the Haley project (Holistic Energy Efficient Hybrid Clouds)
as part of the TU Vienna Distinguished Young Scientist
Award 2011 and Rucon project (Runtime Control in Multi
Clouds), FWF Y 904 START-Programm 2015.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges,” IEEE Internet of Things Journal,
vol. 3, no. 5, pp. 637–646, 2016.

[2] W. Hu, Y. Gao, K. Ha, J. Wang, B. Amos, Z. Chen, P. Pillai,
and M. Satyanarayanan, “Quantifying the impact of edge
computing on mobile applications,” in 7th ACM SIGOPS
Asia-Pacific Workshop on Systems. ACM, 2016, p. 5.

[3] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani,
and D. Rajan, “Prepare: Predictive performance anomaly
prevention for virtualized cloud systems,” in IEEE 32nd
International Conference on Distributed Computing Systems.
IEEE, 2012, pp. 285–294.

[4] J. G. Torres-Toledano and L. E. Sucar, “Bayesian networks for
reliability analysis of complex systems,” in Ibero-American
Conference on Artificial Intelligence, 1998, pp. 195–206.

[5] A. Darwiche, Modeling and reasoning with Bayesian net-
works. Cambridge University Press, 2009.

[6] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian
network classifiers,” Machine learning, vol. 29, no. 2-3, pp.
131–163, 1997.

[7] K. B. Korb and A. E. Nicholson, Bayesian artificial intelli-
gence. CRC press, 2010.

[8] M. J. Druzdzel and A. Onisko, “Are bayesian networks
sensitive to precision of their parameters,” in Intelligent
Information Systems Conference. Warsaw, Poland: Academic
Publishing House EXIT, 2008, pp. 35–44.

[9] R. Jhawar, V. Piuri, and M. Santambrogio, “Fault tolerance
management in cloud computing: A system-level perspec-
tive,” IEEE Systems Journal, vol. 7, no. 2, pp. 288–297, 2013.

[10] C. A. Ericson and C. Ll, “Fault tree analysis,” in System Safety
Conference, 1999, pp. 1–9.

[11] D. M. Chickering, “Learning bayesian networks is NP-
complete,” in Learning from data. Springer, 1996, pp. 121–
130.

[12] B. Schroeder and G. Gibson, “A large-scale study of failures
in high-performance computing systems,” IEEE Transactions
on Dependable and Secure Computing, vol. 7, no. 4, pp. 337–
350, 2010.

[13] A. Gorski, “Chi-square probabilities are poisson probabilities
in disguise,” IEEE Transactions on Reliability, vol. 34, no. 3,
pp. 209–211, 1985.

[14] D. Satria, D. Park, and M. Jo, “Recovery for overloaded mo-
bile edge computing,” Future Generation Computer Systems,
2016.

[15] D. C. Yu, T. C. Nguyen, and P. Haddawy, “Bayesian network
model for reliability assessment of power systems,” IEEE
Transactions on Power Systems, vol. 14, no. 2, pp. 426–432,
1999.

[16] P. Weber and L. Jouffe, “Reliability modelling with dynamic
bayesian networks,” in 5th IFAC Symposium on Fault Detec-
tion, Supervision and Safety of Technical Processes. IFAC,
2003, pp. 57–62.

[17] H. Langseth and L. Portinale, “Bayesian networks in reliabil-
ity,” Reliability Engineering & System Safety, vol. 92, no. 1,
pp. 92–108, 2007.

[18] H. Boudali and J. B. Dugan, “A discrete-time bayesian
network reliability modeling and analysis framework,” Relia-
bility Engineering & System Safety, vol. 87, no. 3, pp. 337–
349, 2005.

[19] A. Bobbio, L. Portinale, M. Minichino, and E. Ciancamerla,
“Improving the analysis of dependable systems by mapping
fault trees into bayesian networks,” Reliability Engineering &
System Safety, vol. 71, no. 3, pp. 249–260, 2001.

[20] N. Khakzad, F. Khan, and P. Amyotte, “Safety analysis in
process facilities: Comparison of fault tree and bayesian net-
work approaches,” Reliability Engineering & System Safety,
vol. 96, no. 8, pp. 925–932, 2011.

[21] O. Doguc and J. E. Ramirez-Marquez, “A generic method
for estimating system reliability using bayesian networks,”
Reliability Engineering & System Safety, vol. 94, no. 2, pp.
542–550, 2009.

[22] Y. Dai, Y. Xiang, and G. Zhang, “Self-healing and hybrid
diagnosis in cloud computing,” in IEEE International Con-
ference on Cloud Computing. Springer, 2009, pp. 45–56.

